GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: DESIGN OF MACHINE ELEMENTS (COURSE CODE: 3351902)

Diploma Programme in which this course is offered	Semester in which offered
Mechanical Engineering	5 th Semester

1. RATIONALE

For production of machine parts and components it is required that specific shape and size of machine parts are determined and their drawings are prepared. We also have to select specific material for that product. This process is called as design. In designing a machine component it is necessary to have a good knowledge of many subjects such as Mathematics, Engineering Mechanics, Strength of Materials, Theory of Machines, Workshop Processes and Engineering Drawing. Students have learnt these subjects in previous semesters. This course curriculum provides the students' knowledge of design process, as well as familiarity with design of components subjected to various stresses and moments like direct stress, bending stress, twisting moment and combined stresses. In this course students will learn design of machine components/elements like cotter joint, knuckle joint, power screw, levers, helical and leaf springs, couplings, pressure vessels, bearings, etc.

2. LIST OF COMPETENCY

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competencies:

• Design a simple machine element with appropriate material for given user defined boundary and loading conditions.

3. COURSE OUTCOMES

The theory should be taught and practical should be carried out in such a manner that students are able to acquire different learning objectives in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Identify various failures and calculate resisting areas of machine elements.
- ii. Use preferred numbers and standardization to select element/element dimension.
- iii. Design machine element subjected to:
 - a: Direct stresses.
 - b: Bending stresses.
 - c: Twisting stresses.
 - d: Combined stress.
- iv. Design of thin and thick cylinder pressure vessel.
- v. Select appropriate bearing for given situation/application.
- vi. Calculate important bearing characteristics.

4.	TEACHING AND EXAMINATION SCHEME

Teaching Scheme		Total	Examination Scheme					
(In Hours)		Credits Theory Marks (L+T+P)		Theory Marks		ctical arks	Total Marks	
L	Т	Р	С	ESE	PA	ESE	РА	
3	0	2	5	70	30	20	30	150

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P -Practical; C – Credit, ESE -End Semester Examination; PA - Progressive Assessment.

5. COURSE DETAILS.

	Major Learning	
Unit	Outcomes	Topics and Sub-topics
	(in cognitive domain)	
	1a. List various factors to	1.1 General consideration and factors
Unit – I.	be considered for	influencing the design of machine
	design process.	elements and design process.
Introduction.	1b. Identify and select	1.2 Various materials used in
	materials that can be	manufacturing of machine
	used for design of	elements and their properties.
	machine elements.	1.3 Types of loads, types of stresses,
	1c. Explain loads,	concept of stress concentration and
	stresses, stress	factor of safety.
	concentration factor	1.4 Standardization and preferred
	and factor of safety.	numbers, numeric examples on
	1d. List Types of loads,	preferred numbers.
	types of stresses	
	1e. Select standard items	
	and preferred	
	numbers for	
	designing simple	
	machine elements.	
	2a. Describe the design	2.1 Illustration of simple machine
Unit– II	process of simple	elements subjected to direct stresses-
	elements like	independently and identification of
Design of	linkages, etc.	resisting areas (simple numeric
machine	2b. Calculate resisting	examples).
elements	area of simple	2.2 Design of simple machine elements
subjected to	machine element	subjected to uni-axial direct stresses-
direct stresses.	subjected to direct	independently.
	independent stress.	2.3 Design procedure (with numeric
	2c. Explain the design of	examples), steps, identification of
	cotter joint and	resisting areas and design of:
	Knuckle joint.	1. Knuckle joint.
	20. Explain the design	11. Cotter joint.
	process of riveted	111. Kiveted joints.
joint, welded joint and		iv. Welded joint-fillet & lap joint.

	threaded fasteners.	v. Threaded fasteners & screw			
		jack.			
3a. State the fundamental		3.1 Principle of bending and its			
Unit– III	bending equation.	fundamental equation.			
	3b. State modulus of	3.2 Modulus of various sections,			
Design of	various sections	example of pure bending like levers			
machine	subjected to pure	beams, axle, etc.			
elements	bending like levers,	3.3 Types of levers.			
subjected to	beams and axles	3.4 Design procedure (with numeric			
bending 3c. List types of levers.		example) of levers including cross			
stresses.	3d. Design simple lever	section of arms, bosses and pins.			
	based on given input.	3.5 Design procedure (with numeric			
	3e. Design leaf spring.	example) of leaf spring.			

Unit–IV 4a. State fundamental 4.1 Fundamental equation of t	wisting		
equation of twisting moment with design procedur	e.		
Design of moment. 4.2 Types of shafts with im	portant		
machine 4b. List types of shafts features of each.	-		
elements with important 4.3 Design of shafts (with r	umeric		
subjected to features of each. examples).			
direct and 4c. List types of keys, 4.4 Types of keys, applications	of each		
twisting couplings, spring & and design procedure (with r	umeric		
moments. applications of each examples).			
4d. Explain the design 4.5 Types of couplings and applic	ations.		
procedure of shafts, 4.6 Design of muff and flange co	uplings		
keys and couplings. (with numeric examples).			
4e. Define helical spring 4.7 Types of spring, terminology	related		
terminology and its to helical spring and applicat	ions of		
applications. helical spring.			
4f. Calculate numerical			
on the design			
procedure of machine			
elements subjected to			
twisting moment.			
5a. Define eccentric 5.1. Eccentric loading-			
Unit-V loading. i. Concept.			
5b. Draw frame-clamp, ii. Illustrations like frame, C-cl	amp,		
Design of Bracket, Foundation Bracket, Foundation bolt, B	olts in		
machine bolt, Bolts in flange, flange, etc.	flange, etc.		
elements etc. iii. Design of machine element	like		
subjected to 5c. Design machine C-Clamp, bracket, foundation	n bolt		
direct and components and bolts in flange.(with num	neric		
bending subjected to eccentric examples).			
stresses. loading.			
6a. Define pressure 6.1 Types and applications of p	ressure		
Unit-VI vessels vessels used in industries	State		
6b. State types of Range of pressure also.			
Design of pressure vessels with 6.2 Design of thick and thin cy	linders		
pressure range of pressure. (with numeric examples).	1 (1.1		
vessels. 6c. Design simple thick 6.3 Design of thin spherical she	l (with		
and thin cylinder numeric examples).	()]]		
pressure vessels.	. (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	- (
ou. Design simple unit	. (
od. Design simple time spherical shell. 7a. Classify baserings 71. Classification of baserings			
Od. Design simple time spherical shell. 7a. Classify bearings. 7b. Explain designation 72 Papering designation as per IS			
Od. Design simple time spherical shell.7a. Classify bearings.7b. Explain designation of hearings72. Antifriction right73. Antifriction parings	types		
Od. Design simple time spherical shell.70.Classify bearings.7.1Classification of bearings.Unit-VII7a.Classify bearings.7.1Classification of bearings.7b.Explain designation of bearings.7.2Bearing designation as per IS.Selection7cSelect appropriateadvantages applications	types,		
Od. Design simple time spherical shell.Unit-VII7a. Classify bearings. 7b. Explain designation of bearings.7.1 Classification of bearings. 7.2 Bearing designation as per IS. 7.3 Antifriction bearings: advantages, applications.Selection7c. Select appropriate anti-friction bearings7.4 Selection procedure of anti-	types,		
Od. Design simple time spherical shell.Unit-VII7a. Classify bearings.7b. Explain designation of bearings.7.1 Classification of bearings.7b. Explain designation of bearings.7.2 Bearing designation as per IS.7c. Select appropriate anti-friction bearings7.4 Selection procedure of anti- bearingsprocedure for bearingsfrom manufacturer's	types,		
Od. Design simple time spherical shell.Unit-VII7a. Classify bearings.7.1 Classification of bearings.7b. Explain designation of bearings.7.2 Bearing designation as per IS.Selection procedure for bearings.7c. Select appropriate anti-friction bearings7.4 Selection procedure of anti- bearings.from manufacturer's catalogue7.5 Calculation for anti-friction bearings.	types,		
Od. Design simple time spherical shell.70.Design simple time spherical shell.Unit-VII7a. Classify bearings.7.1Classification of bearings.7b. Explain designation of bearings.7.2Bearing designation as per IS.Selection procedure for bearings.7c. Select appropriate anti-friction bearings7.3Antifriction bearings: advantages, applications.From manufacturer's catalogue.7.4Selection procedure of anti- bearings.7d. Calculate the load onbasic dynamic load load	types, friction earings: rating		

Unit		Toophing	Distri	bution of	f Theory	y Marks
No.	Unit Title	Hours	R	U	A	Total Marka
_		-	Level	Level	Level	Marks
I	Introduction.	8	3	7	4	14
II	Design of machine elements subjected to direct stresses.	9	3	4	7	14
III	Design of machine elements subjected to bending stresses.	5	0	0	7	7
IV	Design of machine elements subjected to direct and twisting moments.	8	4	3	7	14
V	Design of machine elements subjected to direct and bending stresses.	4	0	3	4	7
VI	Design of pressure vessels.	4	0	3	4	7
VII	Selection procedure for bearings.	4	4	3	0	7
	Total	42	14	23	33	70

6. SUGGESTED SPECIFICATION TABLE WITH HOURS AND MARKS (THEORY).

Legends: R = Remember U= Understand; A= Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table. **General Notes:**

- a. If midsem test is part of continuous evaluation, unit numbers I, II (Up to 2.3(ii) only, which are Knuckle and cotter joints only), VI and VII are to be considered.
- b. Ask the questions from each topic as per marks weightage. Numerical questions are to be asked only if it is specified. Optional questions must be asked from the same topic.

7. SUGGESTED LIST OF EXERCISES/PRACTICALS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S. No.	Unit No.	Practical Exercises (outcomes in Psychomotor Domain)		
1	ALL	 Preparatory Activity : a. Interpret and write various course related SI units and their conversions. b. Write normal values of ultimate tensile strength, yield strength, density, modulus of elasticity and Poisson's ratio of commonly used materials. c. List normal values of factor of safety for different situations. d. Recall area, volume, section modulus, moment of inertia, radius of gyration, etc. for commonly used various section and shapes. e. Draw orthographic projections symbols. f. Draw symbols of threads, surface roughness, geometrical tolerances symbols, section lines, etc. g. Recall by sketching the general systems for limits, fits and tolerances. 	02	
2	II,III, IV and V.	 Design of simple components: a. A C15 rod is subjected to tensile load ofkN. Determine diameter of rod if factor of safety is b. Teacher will assign the sketch of a component/s with loading that induces tensile/compression and shear stresses. Teacher will also assign material, load, and factor of safety. Students are asked to determine the dimensions. c. Teacher will assign the sketch of a component/s with loading that induces bending stress in addition to two more types of stresses (from tensile, compression, shear, crushing or other.). Teacher will also assign material, load, factor of safety and other data if required. Students are asked to determine specified dimensions. If required, additional data may be given. d. Teacher will assign the sketch of a component/s with loading that induces twisting moment. This may have additional one or two types of stress/es. Teacher will also assign material, factor of safety and other required data.(Like kW, rpm, Torque, etc.). Students are asked to determine the specified dimensions. e. Student will also prepare the report on this, which will include calculations, sketches in A4 size drawing papers with identification of areas subjected to induced stresses. 	04	

		wherever is necessary. Also assume suitable data if		
	required. State the assumptions.)			
		Design of assemblies:		
		a. Take load =kN,		
		b. Take material as		
		c. Factor of safety =		
		d. Design following showing other assumptions, steps		
		and final dimensions.		
		i. Knuckle joint.		
3	ПIV	ii. Cotter joint.	06	
5	11,1 v	iii. Screw jack.	00	
		iv. Flange coupling.		
		(Note: Each student of the batch must have		
		different values of data. However problem may be		
		same. Students are also expected to solve these as		
		partial assignments at home. Use design data book		
		wherever is necessary. Also assume suitable data if		
		required. State the assumptions.)		
		Sketches and drawings of design assemblies:		
		a. Sketch production drawings of details (individual		
		parts). Show dimensions calculated above at		
		experience number 3. Use A4 size paper only.		
4	II,IV	b. Prepare assembly drawings with dimensions and	00	
4		scale (if required). Use A4 size paper only.	02	
		c. Show areas under various stresses induced using		
		color codes.		
		(Students are also expected to solve these as partial		
		assignments at home.)		
		Modeling:		
		a. Create 3D Models of all parts and assemblies (In		
		group of 4 students. Each student will perform one)		
		with dimensions designed at experience number 3		
		and drawn at experience number 4 using any		
5	II,IV	parametric CAD software (like Creo Solid Edge	06	
		and Inventor)		
		b Take printout of the 3D models and orthographic		
		views (with dimensions) of all parts and		
		assemblies Attach all prints with term work		
		Tutorials:		
		a Tutorial on bell crank lever design (Teacher will		
	Ш	assign the data- one problem)		
6	and	b Tutorial on bearing (Teacher will assign the data-	02	
Ū	VII	one problems)	02	
	V 11	(Students are also expected to solve these as partial		
		assignments at home)		
		Mini project:		
		a Assign simple mechanical assembly (preferably		
7	ΔΙΙ	from real life or thought by batch teacher Students	06	
	ALL	will be provided with a sketch having 5.6	00	
		machined/mechanical components (exclude gears		

Total Houng	28
executed. Use power point presentation.	
d. Present this mini project with photos/movies of	
in A4 size drawing paper manually.	
c. Sketch production drawings (details and assembly)	
b. Batch students will design this assembly with	
a batch.	
manufactured at institute's workshop). Also give	
assemblies. Also ensure that such assembly can be	

Note:

- a) Students should bring any one reference design book (preferably English) and one design data book (By PSG Coimbatore) during theory and practical/exercises sessions.
- b) It is compulsory to prepare log book of exercises. It is also required to get each exercise recorded in logbook, checked and duly dated signed by teacher. PA component of practical marks is dependent on continuous and timely evaluation of exercises.
- c) Term work report must not include any photocopies, printed manual/pages, litho, etc. It must be hand written / hand drawn by student only. However, teacher may allow related photographs/movie for experience number 8.
- d) For 20 marks ESE, students are to be assessed for competencies achieved. They should be given following type of tasks:
 - i. Design some elements of cotter joint/knuckle joint/ power screw.
 - ii. Design of some mechanical elements subjected to three to four types of stresses.
 - iii. Design of flange coupling.
 - iv. Design of leaf spring/ lever.
 - v. Problems on bearing, equivalent load, rating, etc.

8. SUGGESTED LIST OF STUDENT ACTIVITIES.

SR.NO.	ACTIVITY
1	Download and present various presentations related to stresses in machine
	elements.
2	Download and present various presentations related to failure of machine elements.
3	Download and present various presentations related to design of machine elements.

Sr. No.	Unit	Unit Name	Strategies
1	Ι	Introduction.	Power point presentations, live examples, demonstration of BIS on preferred numbers and standardizations,
2	Π	Design of machine elements subjected to direct stresses.	Movies/ animations/ educational charts, videos & model of different machine elements subjected to various stresses, live demonstration of failed components,
3	III	Design of machine elements subjected to bending stresses.	Movies/ animations/ educational charts, videos & model of different machine elements subjected to bending, live demonstration of bending and induced stresses.
4	IV	Design of machine elements subjected to direct and twisting moments.	Movies/ animations/ educational charts, videos & model of different machine elements subjected to twisting, live demonstration of twisting.
5	V	Design of machine elements subjected to direct and bending stresses.	Movies/ animations/ educational charts, videos & model of different machine elements subjected to direct and bending stresses.
6	VI	Design of pressure vessels.	Movies/ animations/ educational charts, videos, demonstration of live pressure vessels.
7	VII	Selection procedure for bearings.	Movies/ animations/ educational charts, videos, live demonstration of bearings, demonstration of BIS catalogues.

9. SPECIAL INSTRUCTIONAL STRATEGIES (if any).

10. SUGGESTED LEARNING RESOURCES

A) List of Books

S.No.	Title of Book	Author	Publication
1.	Machine Design.	R.K.Jain.	Khanna Publishers.
2.	Machine Design	TVS Murthy and N.Shanmugam.	Anuradha publications.
3.	Machine Design	Pandya and Shah.	Charotar Publishing House Pvt. Limited.
4.	Machine Design	R.C.Patel and A.D.Pandya	Acharya Book Depot, 1959.
5.	Design of Machine Elements	Shigley.	Tata McGraw-Hill Education.
6.	Design Data Book	P.S.G. College of Technology, Coimbatore.	P.S.G. Publication.
7.	Design Data Book	K. Mahadevan & Balveera Reddy.	S. Chand.
8.	A Text book of Machine Design	R.S.Khurmi and J.K.Gupta	S. Chand.

9	Design of machine	V.B.Bhandari.	McGraw-Hill.
2.	elements.		

B) List of Major Equipment/ Instrument with Broad Specifications:

Sr.No.	Major Equipment/ Instrument	Broad Specifications	
1	Wooden models (with cut sections) of	Two sets of each with design	
	knuckle joint, cotter joint, riveted	dimensions.	
	joints, welded joints, screw jacks,		
2	Assorted bearings.	As per BIS.	
3	Miniature pressure vessels.	As per standards / design dimensions.	
4	Assorted levers, shafts, couplings,	Used as machine elements.	
	flanges, keys, C-clamps, frames, other		
	machine components.		
5	Assorted failed components.	Used as machine elements.	

C) List of Software/Learning Websites

- a. Chp:1 Introduction.
 - i. http://nptel.ac.in/courses/Webcourse-
 - contents/IIT%20Kharagpur/Machine%20design1/left_home.html
- b. Chp:2 Design of Machine elements subjected to direct stresses.
 - i. http://nptel.ac.in/courses/Webcoursecontents/IIT%20Kharagpur/Machine%20design1/left_mod4.html
- c. Chp: 3 Design of Machine elements subjected to Bending stresses.
 - i. http://nptel.ac.in/courses/Webcoursecontents/IIT%20Kharagpur/Machine%20design1/left_mod7.html.
- d. Chp:4 Design of Machine elements subjected to direct and twisting moments.
 - i. http://nptel.ac.in/courses/Webcoursecontents/IIT%20Kharagpur/Machine%20design1/left_mod4.html
 - ii. http://nptel.ac.in/courses/Webcoursecontents/IIT%20Kharagpur/Machine%20design1/left_mod5.html
 - iii. http://nptel.ac.in/courses/Webcoursecontents/IIT%20Kharagpur/Machine%20design1/left_mod8.html
 - Christ Design of Machine alements subjected to direct and handing strasses
 - Chp: 5 Design of Machine elements subjected to direct and bending stresses. i. http://nptel.ac.in/courses/Webcourse
 - contents/IIT%20Kharagpur/Machine%20design1/left_mod11.html
- f. chp: 6 Design of Pressure vessels.
 - i. http://nptel.ac.in/courses/Webcourse
 - contents/IIT%20Kharagpur/Machine%20design1/left_mod9.html
- g. Chp:7 Selection Procedure for bearings.
 - i. http://nptel.ac.in/courses/Webcourse-
 - contents/IIT%20Kharagpur/Machine%20design1/left_mod14.html
- h. Chp:ALL

e.

i. https://www.machinedesignonline.com/MDO_Portal/design_compone nt.html

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE.

Faculty Members from Polytechnics:

- **Prof. M.P.Jakhaniya**, Lecturer in Mechanical Engineering, C.U.Shah Govt.Poly., Surendranagar.
- **Prof. D.R.Katariya**, Lecturer in Mechanical Engineering, Government Polytechnic, Bhuj.
- **Prof.V.N.Patadiya,** Lecturer in Mechanical Engineering, N.M.Gopani Polytechnic, Ranpur.

Coordinator and Faculty Members from NITTTR Bhopal:

- **Prof. S.K.Pradhan**, Associate Professor, Mechanical Engg. NITTTR, Bhopal
- Dr. A.K.Sarathe, Associate Professor, Mechanical Engg. NITTTR, Bhopal